
Institute of Architecture of Application Systems,
University of Stuttgart, Germany

{haupt, leymann, nowak, wagner}@iaas.uni-stuttgart.de

Lego4TOSCA: Composable Building Blocks
for Cloud Applications

Florian Haupt, Frank Leymann, Alexander Nowak, Sebastian Wagner

© 2014 IEEE Computer Society. Personal use of this material is
permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works
for resale or redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works must be obtained from the IEEE.

@inproceedings{INPROC-2014-24,
 author = {Florian Haupt and Frank Leymann and Alexander Nowak and
 Sebastian Wagner},
 title = {Lego4TOSCA: Composable Building Blocks for Cloud Applications},
 booktitle = {Proceedings of the 7th IEEE International Conference on Cloud
 Computing (CLOUD 2014)},
 pages = {160-167},
 year = {2014},
 doi = {10.1109/CLOUD.2014.31},
 publisher = {IEEE}
}

:

Institute of Architecture of Application Systems

Lego4TOSCA: Composable Building Blocks for

Cloud Applications

Florian Haupt, Frank Leymann, Alexander Nowak, Sebastian Wagner

Institute of Architecture of Application Systems, University of Stuttgart

Universitätsstr. 38, 70569 Stuttgart, Germany

{firstname.lastname}@iaas.uni-stuttgart.de

Abstract—The Topology and Orchestration Specification for

Cloud Applications (TOSCA) enables the description,

provisioning, and management of complex cloud applications in a

portable way. TOSCA, therefore, provides a comprehensive yet

complex set of mechanisms that may hinder users from

unleashing its power due to misusing or neglecting parts of those

mechanisms. TOSCA has just been standardized and, although it

seems to be highly adopted in industry, there is a lack of

systematic research of its features and capabilities. In this work

we discuss the design of basic building blocks for cloud

applications, called node types, and show how they can benefit

from a deep integration with TOSCA. We developed a generic

architecture for the realization of TOSCA node types, show an

implementation of this architecture and validate it based on a

sample cloud application. Our work gives an insight into the

capabilities of TOSCA with respect to enable the creation of

portable cloud services based on a set of composable building

blocks.

Keywords—Cloud Application; Cloud Service; Cloud

Management; Service Management; TOSCA

I. INTRODUCTION

Cloud Computing is still one of the hottest topics in
strategic IT development of organizations [15]. While most
organizations have identified proper IT operations that are
suitable candidates for cloud environments, the migration,
deployment, and management of those components and
applications in cloud environments is still an open issue. The
Topology and Orchestration Specification for Cloud
Applications (TOSCA) [1] is a standard that addresses those
issues and allows stakeholders to describe applications and
their management operations in a portable fashion [16]. While
TOSCA provides a very precise language to describe the high-
level topology components, i.e. the different building blocks of
an application as well as their relations, and the management
operations that should be provided by each node, there is a lack
of description and support on how their implementations
should look like. A proper implementation of those
components, however, is crucial to benefit from all capabilities
of TOSCA.

To address that drawback this work presents a
comprehensive design framework to develop composable
building blocks that are used to describe applications and their
management in TOSCA. Consequently, the contribution of this
work is twofold: (i) we present a design framework that
describes how building blocks, i.e. node types and their related

implementation artifacts, for applications described in TOSCA
should be implemented. This framework not only describes the
implementations of single building blocks, but also
mechanisms that allow communication between multiple
building blocks to resolve given dependencies between them.
(ii) we describe, how the developed building blocks are used in
TOSCA in an imperative and declarative fashion.

The remainder of this work is structured as following:
Section II provides an overview on TOSCA. Next, section III
describes the design-framework for implementing building
blocks for TOSCA and section IV describes how to use them
for deployment and management. Subsequently, section V
presents the validation of the work based on a sample
application, section VI summarizes the related work in this
field and section VII concludes this work and provides an
overview on future work.

II. TOSCA

The OASIS standard Topology and Orchestration Specification
for Cloud Applications (TOSCA) was developed to create
portable descriptions for automated management and
provisioning of cloud applications [5][7]. The centerpiece of a
TOSCA application description is the application topology
which basically consists of a set of nodes and edges. Each node
represents an individual component of a cloud application. This
can be software components such as operating systems,
application servers, virtual machines, etc. but also physical
resources such as servers or network nodes. Edges define
arbitrary dependencies between nodes, e.g. hostedOn or uses.

The example topology presented in Fig. 1 describes the
components and their dependencies required for hosting and
running a Web application with the name NoteApp_L4T. This
Web application is hostedOn an Apache Web server with name
ApacheWS_L4T which is installed on an Ubuntu Linux
operating system that is running on an Amazon EC2 virtual
machine. The relations between all nodes, except between the
nodes NoteApp_L4T and MySQL_L4T, are defined as
hostedOn, i.e., the source of each hosted on relation serves as
“runtime container” for the target node of the relation. The
relationship connectsTo between the nodes NoteApp_L4T and
MySQL_L4T indicates that the node NoteApp_L4T accesses the
functionality of the node MySQL_L4T.

In TOSCA, an application topology is described by a
Service Template that is created by an Application Architect (a

person that knows the overall cloud application). Such a
service template is represented as a XML file where the nodes
of a topology are represented by Node Templates and their
relations by Relationship Templates. These templates may
specify property values and policies that are required for the
management and provisioning of the components they
represent. Moreover, to enable the reusability of
implementations and management operations of a component,
they refer to a so called Node Type or Relationship Type,
respectively. In Fig. 1, the name of the node type that a node
template refers to is shown in brackets. Consequently, a
node/relationship type is a model for an arbitrary number of
node/relationship templates. The management operations as
well as the property schemes that are part of node/relationship
types are defined by Type Architects that are experts for certain
components and possible relations between other components
[2]. A node type for an Apache Web server may, for instance,
define management operations for starting and stopping the
server, installing Web applications, etc. A node type may also
define suitable properties to specify the URL and the port
where the Web server can be accessed. Using an associated
node template, concrete values can be assigned to these
properties. In our example in Fig. 1 the node template
ApacheWS_L4T assigns the 'http://lt4server.com' URL to the
property BaseURL and the value '80' to the property Port.

Fig. 1. Topology of the Notebook Web Application

Moreover, the Type Architect may also define requirements
and capabilities for a node type. The requirements specify what
features the node type requires from the node type it is related
to. The capabilities on the other hand specify the features
offered by a node type. All node types whose requirements and
capabilities match can be related to each other in the topology.
In our example in Fig. 1 the node type NoteApp_L4T may, for
instance, define the requirement that the database must support
data encryption. If the node type MySQL_L4T specifies in its

capabilities that it offers encryption the node templates that are
based on these node types can be interconnected.

So far we just discussed how a topology can be described in
an abstract way by creating service templates. However, to
operate and manage a cloud application and its components
executable software artifacts are needed. The TOSCA
specification, therefore, distinguishes between Deployment
Artifacts and Implementation Artifacts that have to be provided
by Artifact Developers. Deployment artifacts (DAs) are the
executables that represent the single components of a cloud
application, i.e., for each node type at least one DA has to be
specified. The DAs can be physical files such as virtual
operating system images, Web archive (WAR) files, etc.
However, a DA can be also a running service such as Amazon
EC2. In this case the node type does only provide a reference
(usually an URL) to a service. In our example topology the
Ubuntu node type is implemented by an Ubuntu Linux Amazon
Machine Image (AMI).

An Implementation Artifact (IA) is an executable that
implements the management operations specified by a node- or
relationship type. An IA makes also use of the properties
defined by the node type. Like DAs, IAs can be either provided
as physical files along with the topology or as remote services.
An IA can be implemented in different ways, e.g., as script or
as Web service. Each node- or relationship type can also
provide multiple IAs. For the node type MySQL_L4T there may
be, for instance, two IAs defined, one is used for managing a
MySQL database running on Windows and another is used for
managing a MySQL database running on Linux.

To provide an easy way to handle and exchange the definition
files and the artifacts they can be packaged into a Cloud
Service Archive (CSAR). As the structure of a CSAR file is also
defined by the TOSCA specification it can be deployed on any
TOSCA compliant runtime environment (TOSCA container).
Note, that the same cloud application (i.e., service template)
may be provisioned multiple times (e.g., on different Amazon
EC2 machines). This implies that the same node- and
relationship templates are instantiated multiple times.
Furthermore in this paper, we refer to an instance of a node
template as node instance and to an instance of a relationship
template as relationship instance.

III. NODE TYPE DESIGN

One goal of this work is to evaluate the design of the
TOSCA language regarding node types. We are examining the
main modeling constructs provided by TOSCA, we show how
they can be used and what benefits they provide. To achieve
this, we created a set of node types that are tightly integrated
into TOSCA. The design of TOSCA node types comprises
several fundamental design decisions. In this section, we will
discuss the basic design decisions of the Lego4TOSCA Node
Types.

A. Node Type Properties

A TOSCA node type may contain the definition of a
properties document using a XML Schema Definition (XSD),
as shown in Fig. 2 on the left side. A node template may then
contain an instantiation of this properties document, shown in

the right part of Fig. 2. This allows an application architect to
configure the details of a node template as part of the
application topology. In our work, we identified three different
types of properties, each representing a different use case for
the properties document.

Tomcat MyTomcat

Node Type Node Template

typeFor

<complexType name=„TomcatProperties“>

<sequence>

<element name=„port“ type=„string“/>

</sequence>

</compleyType>

Properties Definition Property Defaults

<properties>

<port>…</port>

</properties>

typeFor

Fig. 2. Node Type Properties

Configuration Properties are set by the application
architect as part of the definition of a service topology. They
allow the detailed configuration of a node template. The
management operations, realized by the implementation
artifacts, read these properties and then act accordingly. As an
example, the Lego4TOSCA node type “Apache Tomcat”
defines a property named “Port” defining which port it shall
listen to. Another example for a configuration property is the
machine type for an Amazon EC2 node template defining
which EC2 instance type will be used.

Implementation Artifact Management Properties are used
by the implementation artifact of a node template to
persistently save data needed to realize its management
operations. These properties are initially set by the
implementation artifact of the corresponding node template and
then read and changed during the lifetime of the corresponding
Node Instance. As an example, the Lego4TOSCA Node Type
“AWS EC2” defines a property named “Public DNS”. This
property is initially set by the AWS EC2 implementation
artifact when it creates and starts a new EC2 virtual machine.
After that, the DNS name property is also accessed by other
implementation artifacts. For example, the Apache Tomcat
implementation artifact needs to know the DNS name of the
underlying virtual machine to determine the public available
URL of web applications hosted on a Tomcat server.

General Management Properties are used, similar to
implementation artifact management properties, to persist data
needed for management tasks. The main difference is that
general management properties relate to the management of a
whole service topology whereas implementation artifact
management properties only relate to the management of a
single node of a service topology. Global management tasks in
TOSCA are typically modeled as management plans.
Therefore, general management properties are typically written
and read by management plans to realize complex management
tasks. As an example, an application architect can define a
management plan that initiates some cleanup operations on
several nodes of a service topology. This plan may then, after
each cleanup operation that successfully completed, write the
current timestamp to the properties document of the respective
node instance. If the same management plan is then executed

again sometime later, it will read this property to decide, if
another cleanup is needed or if the last cleanup still holds.

B. Interface Design

A TOSCA node type can offer one or more interfaces, each
providing one or more operations defining input and output
parameters. These interfaces describe the management
operations offered by a node type. Management plans are then
used to orchestrate these basic management operations into
higher level management tasks. For example, the provisioning
of a complex service topology comprises the ordered
provisioning and configuration of multiple nodes like virtual
machines, databases or application servers. The basic
provisioning and configuration operations are offered by the
corresponding node types. They can be orchestrated by a
management plan in order to provision and configure a whole
service topology.

The interfaces of the Lego4TOSCA node types basically
comprise two types of parameters, technical parameters and
functional parameters. Functional parameters are directly
related to the management operation offered by a node type. In
addition, the interfaces of the Lego4TOSCA node types
contain two technical parameters. The callback address
realizes asynchrony while the node instance ID uniquely
identifies the target of the management operation. These two
parameters are motivated and discussed in the following.

Management operations in general can be long running. For
example, starting a virtual machine usually takes some minutes
and backing up a huge database may even take some hours.
Offering these operations over a synchronous interface would
block the caller for a long time as well as typically introduce
technical problems related to timeouts. Therefore, the
interfaces of the Lego4TOSCA node types are consistently
defined as asynchronous interfaces based on a generic callback
mechanism.

The interaction with the asynchronous interface of the
Lego4TOSCA node types is demonstrated in Fig. 3. The caller,
for example a management plan, initially calls the needed
management operation. In addition to the functional
parameters, which are not explicitly shown in this case, the
caller has to specify a callback address. This address will then
later be used to return the result of the execution of the
management operation to the caller. When called, the
implementation artifact at first generates a Universally Unique
Identifier (UUID) [8] identifying the current execution of the
called management operation. After that, the implementation
artifact starts the asynchronous execution of the management
operation using a specific mechanism provided by Java, the
executor service. For a better understanding, the interaction
with the executor service has been simplified in this example.
Directly after initiating the execution of the management
operation, the implementation artifact returns the UUID
generated before to the caller and thereby acknowledges the
successful start of the execution of the called management
operation. At this point in time, the management operation is
still being executed by the executor service. The caller however
is not blocked anymore and can continue to, for example, call
additional management operations. At the time the executor

service finishes the execution of the management operation, it
returns the result to the callback address initially provided by
the caller. The result message always contains the UUID
identifying the specific execution of the called management
operation. This way, the caller is able to correlate the received
result message to the initial operation call.

Caller Implementation Artifact

mgmtOp(URL callback,...)

UUID correlationID

returnResult(UUID correlationID,...)

Execute mgmtOp

Executor Service

mgmtOp(UUID correlationID, URL callback,...)

Fig. 3. Callback Mechanism

Another common approach to realize asynchronous
communication is the use of a messaging system [9]. In this
case, the interaction between participants is realized by sending
messages to and receiving messages from so called channels,
either queues or pub-sub topics. In contrast to the callback
mechanism realized by the Lego4TOSCA node types, the
messaging based approach requires the presence of a
messaging middleware. By choosing the callback mechanism,
the Lego4TOSCA node types do not rely on the presence of an
appropriate messaging middleware and are therefore self-
contained and portable.

The second technical parameter of each Lego4TOSCA
interface is induced by the fact, that implementation artifacts
are defined per node type. As there are in general multiple node
templates for one node type and likewise multiple instances of
one node template, one implementation artifact realizes the
management operations for all instances of the corresponding
node type. Therefore, when calling a management operation of
an implementation artifact, the caller has to provide some data
identifying the target of each management operation call.

VMNode Type

typeFor

<Interface>

<Operation name=„start“/>

<Operation name=„stop“/>

<Operation name=„restart“/>

</Interface>

offers

implementedBy

VM-ImplementationArtifact

Service Topology

MyVM1 MyVM2

Service Instance 1

MyVM1
ID: 13

MyVM2
ID:17

Service Instance 2

MyVM1
ID: 42

MyVM2
ID:46

te
m

p
la

te
Fo

r

manages

Fig. 4. Implementation Artifact managing multiple Node Instances

The relation between implementation artifacts and the
components managed by them is depicted in Fig. 4. The node
type for a virtual machine (VM), as shown on the left side,
offers an interface to manage virtual machines. In addition to
the interface definition, the node type also provides an
implementation artifact that implements the management
operations defined by the interface. This node type can then be
used by an application architect to model a service topology,
possibly containing multiple node templates of this node type
(as shown in the upper left side of Fig. 4). This service
topology can thereafter be used to create several instances of
the modeled service. In the example shown in Fig. 4 there are
two instances of the modeled service created. Nevertheless,
there is only one implementation artifact available to manage
all instances of the virtual machine node type.

Listing 1, line I, shows the signature of the restart operation
of the virtual machine node type. The parameter “soft” is a
functional parameter used to influence the detailed behavior of
the restart operation. If defined this way, the call of this
operation cannot be related to a specific virtual machine. An
obvious solution would be to extend the interface of the virtual
machine node type with additional parameters providing all
data needed to identify and access a specific virtual machine
(i.e. an instance of the corresponding node template). This is
shown in line II of Listing 1. The parameter “vmid” identifies a
specific virtual machine, the parameter “accesstoken” provides
access credentials needed to access this virtual machine.
However, defining the operation like this requires the caller to
know and manage the details of how to identify and access a
certain virtual machine. As discussed before (section III.A),
this kind of data can also be stored in the properties document
of a node instance. Taking advantage of this feature, the
signature of the restart operation can be defined as shown in
line III of Listing 1. The parameter “nodeID” identifies the
node instance the operation call is related to. This ID can then
be used by the implementation artifact to access the
corresponding properties document. This document contains all
data needed to access the targeted virtual machine, for example
the identifier of the virtual machine and the access credentials.

I. restart(Boolean soft)

II. restart(Boolean soft, String vmid,
 String accesstoken)

III. restart(Boolean soft, String nodeID)

Listing 1. Operation Signatures

The Lego4TOSCA node types follow the approach shown
in line III of Listing 1. The management operations of all node
types contain a single parameter identifying the targeted node
instance and therefore the properties document of the targeted
node instance. This way, the signature of each operation is
defined in a consistent way, providing a simple and intuitive
way of identifying the target node. An application architect
using this interface, for example when modeling management
plans, can concentrate on the domain specific functional
parameters and does not need to care about technical details
how to identify and access node instances.

C. Composability

The Lego4TOSCA node types are a set of common used
building blocks for cloud applications. On the infrastructure
level, node types for the Amazon Web Services Elastic
Compute Cloud (AWS EC2) and for the VMWare ESXi
Hypervisor are provided. On the operating system level there
are node types for Ubuntu Linux and Windows Server. The
middleware level comprises node types for Apache Tomcat (a
Servlet Container), the Apache Web server (a HTTP Server),
the MySQL database and the WSO2 Business Process Server
(an open source BPEL workflow engine). The complete set of
the Lego4TOSCA node types is shown in Fig. 5.

VMWare ESXi AWS EC2

VirtualMachine

Ubuntu Windows Server

VirtualMachine

OperatingSystem

OperatingSystem

Apache Tomcat

ServletContainer

Apache HTTP Server

WebServer

MySQL

SQLDatabase

WSO2 BPS

BPELEngine

Middleware Level

Operating System Level

Infrastructure Level

Fig. 5. Lego4TOSCA Node Types

In order to provide a simple and intuitive way to model
service topologies, the Lego4TOSCA node types are built to be
easily composable and interchangeable. Although the
management of, for example, a MySQL database differs
significantly depending on if it is hosted on a Linux or a
Windows system, the Lego4TOSCA node type for MySQL can
be combined with the Ubuntu node type as well as with the
Windows Server node type. The possible combinations of
different node types can be expressed in TOSCA by defining
corresponding requirements and capabilities. As depicted in
Fig. 5, the node types “VMWare ESXi” and “AWS EC” both
provide the capability “VirtualMachine”. On the other side, the
node types “Ubuntu” and “Windows Server” require exactly
this capability. This way, all possible combinations of the
Lego4TOSCA node types are already part of their definition.

Most of the management operation provided by the node
types operations can only be realized depending on the usage
context of the node type. For example, how to install and start a
Tomcat server heavily depends on whether it is hosted on a
Linux or a Windows system. The Lego4TOSCA node types
realize this kind of operation by dynamically interacting with
each other. An example is shown in Fig. 6 as (2) using dotted
lines. When the implementation artifact of the Tomcat node
type is called in order to start a Tomcat server, the Tomcat
implementation artifact interacts with the implementation
artifact of the underlying operating system. Starting a Tomcat
server can for instance be realized by a shell script. Therefore,
the Tomcat implementation artifact calls the corresponding
operation of the Ubuntu implementation artifact. This

implementation artifact then connects to the targeted Ubuntu
system using SSH and runs the given script.

Tomcat
IA

Tomcat
Server

hostedOn

Ubuntu
IA

Ubuntu
System

deployApp(…)

runScript(…)

SSH(…)

1

start(…)2
HTTP(…)

Fig. 6. Implementation Artifact Interaction

Following this design principle, the Lego4TOSCA node
types reuse already existing functionality provided by other
node types and realize the separation of concerns principle. In
the given example, the implementation of connecting to a
remote system using SSH and running scripts is encapsulated
by the Ubuntu implementation artifact. The Tomcat
implementation artifact simply reuses this functionality offered
by the Ubuntu node type as a management operation.

D. Implementation Artifact Architecture

The common architecture of the implementation artifacts of
the Lego4TOSCA node types is shown in Fig. 7. This
architecture realizes the design decisions discussed before. In
the following, the architecture will be explained using the
Tomcat implementation artifact as an example.

In step 1 a management operation of the node type, realized
by the corresponding implementation artifact, is called. The
first parameter is the node instance ID identifying the target of
the operation call. The second parameter is a functional
parameter indicating that the Tomcat server should be started
with an opened debug port 8000. The operation call is
immediately acknowledged by returning the unique ID of the
current operation execution (“897uhekfkj”).

In step 2, the provided node instance ID is used by the
properties retrieval component to fetch the properties
document of the targeted node instance from the TOSCA
container. This document contains all data needed to access
and manage the Tomcat server.

In step 3, the strategy selection component selects the
appropriate implementation of the called operation, also called
a strategy. This approach follows the strategy pattern, a
generic mechanism to determine appropriate behavior
depending on a given context [10]. The context for strategy
selection is the usage context of the corresponding node type.
In the example shown, starting a Tomcat server differs
depending on what operating system it is installed.

In step 4, the selected strategy component may interact with
the implementation artifacts of other node types to realize the
called management operation. In the example depicted in Fig.
7, the underlying operating system is called to execute a shell
script starting the Tomcat server. This operation call
immediately returns the unique ID of the initiated operation
execution (“asdsd45543j”).

In step 5, the result of the script execution is returned to the
Tomcat implementation artifact using its callback API. The
result message contains the unique ID of the operation
execution, allowing correlating operation calls and resulting
messages.

In step 6, the callback handler component processes the
result message. It may either continue to interact with other
node types, possibly using the strategy selection component
again (6a) or it may also return a result message to the initial
caller of the executed management operation (6b).

E. Analysis

In this section, we will discuss, how the presented design
decision and the corresponding implementation artifact
architecture influences the non-functional properties of the
Lego4TOSCA node types.

The usage of properties documents has multiple effects.
The use of implementation artifact management properties to
persist management related data enables to build stateless
implementation artifacts. All data needed to execute a called
management operation can be read from the corresponding
properties document. Implementation artifacts do not need to
store any data. Stateless components in general enable scaling
by instantiating them multiple times and also allow creating
more robust systems, as failed component instances can simply
be replaced by other ones. The usage of configuration
properties allows to ease the use of management operations
and to build simpler management plans. When using
configuration properties, the configuration of nodes, and
therefore also the configuration of single management
operations, is already contained in the service topology. The
caller of a management operation does not need to provide any,
or at least most of, functional parameters. This allows domain
experts using the management operations to concentrate on
what to do and not on how to do it in detail.

The requirements and capabilities defined by the node
types, in combination with the strategy pattern as the

underlying implementation of this feature, enable simple
composability. They hide the complexity related to technical
dependencies between different node types from the
application architect. Besides a more intuitive modeling
experience, it is also possible to exchange nodes of a topology,
as long they are compatible regarding their requirements and
capabilities.

IV. NODE TYPE USAGE

In this section we discuss how the operations of node types can
be used via their interfaces to perform management tasks and
how the execution of these operations can be orchestrated by
plans to manage the whole cloud application.

The node types we designed provide a set of common
management functions for the respective components they are
representing. The implementation artifacts of the
Lego4TOSCA node types expose these abstract operations as
Web service operations. The signatures of the operations
consist of two different types of parameters: (i) functional
parameters and (ii) technical parameters. To ease the use of the
management operations, each operation accepts two signatures
– with and without functional parameters. If the operation is
called without functional parameters the implementation of the
operation retrieves the values of the functional parameters from
the properties document of the respective node. The technical
parameters are mandatory for each management operation and
have already been introduced and discussed in section III.B.

Recall that all operations may be invoked without a
functional parameter if the expected value can alternatively be
read from the node’s properties. This frees the management
plans from carrying too much redundant information but gives
the flexibility to specify certain properties during instantiation
or runtime of a plan.

The available management capabilities (represented by the
available management operations) of a cloud application can be
processed in two different ways: (i) declaratively, by using the
TOSCA runtime environment or (ii) imperatively, by using

Fig. 7. Lego4TOSCA Implementation Artifact Architecture

Tomcat Implementation Artifact

M
g
m

t
O

p
e
ra

ti
o
n
s Strategy

Selection

Windows

Strategy

Ubuntu

Strategy

Callback API

Callback

Handler

<properties>

<user>tomcat</user>

<pass>s3cret</pass>

<host>myWindows</host>

<path>C:\Tomcat7</path>

</properties>

…

executeScript („myWindows“, „…“)

ok(„asdsd45543j“)

done(„asdsd45543j“)

done(„897uhekfkj“)

set JPDA_ADDRESS=8000

set JPDA_TRANSPORT=dt_socket

bin/catalina.bat jpda start

start(„myTomcat“, debugPort=8000, …)

ok(„897uhekfkj“)

1

Properties

Retrieval

2

4

5

3

6a

6b

internal communication

external communication

pre-defined management plans. Due to its strong dependencies
to TOSCA runtime environments we will only briefly explain
the declarative approach in this work.

In the declarative approach there are no management plans
provided. The TOSCA runtime environment determines the
operations and their execution order to provision or manage a
cloud application solely from the available information within
the service template, i.e. from the node templates and the
relationship templates [2]. This requires the TOSCA runtime to
“know” about the functionalities of all node types and
relationship types within a service template and how to use
them to accomplish management tasks. The management
knowledge is, at least partly, encoded in the runtime
environment. In the declarative approach the data required to
manage a cloud application (e.g. Ports, URLs, etc.) are solely
read from the node’s properties. As the declarative approach
also utilizes the operations of node types, the LegoTOSCA
node types presented in this work can also be used with this
approach. From an application architect perspective the
declarative approach has the advantage that he just needs to
create and maintain the topology of the cloud application, but
he does not need to care about the orchestration of the
management operations. Our experiments revealed that a
declarative approach is usually just suited for simple
management tasks that can be inferred from the topology. For
more complex management tasks on the cloud application we
suggest using management plans.

Imperative processing using management plans is more
flexible for the provisioning and management of a cloud
application. It is called imperative processing because a plan
defines precisely “how” a cloud application has to be managed
[2]. Hence, a plan specifies what operations of the different
node types have to be called, in which order and what data are
required to setup and manage the cloud application. Thereby,
for different management tasks different plans can be defined.
For instance, the plan for provisioning the Notebook
Application shown in Fig. 1 would first setup an EC2 instance
with Ubuntu Linux as operating system by using the
management operations of the Amazon EC2 node type. Then
the management operations of the Apache Web server and
MySQL node types would be used to install them on the
Ubuntu system. The management operations of these node
types would afterwards be used to deploy and setup the
Notebook Application. Since the implementation artifacts are
implementing the actual logic of the management operations
the plans are kept simple. They are just defining the execution
order of the management operations as well as the required
information. The application of the strategy pattern that is part
of our approach leverages this simplicity even more: Plans can
focus on a single node type but are freed from required logic
that distinguishes between different node type stacks. For
instance, a plan does not need to implement different
management logic for an Apache Web server depending on if it
is deployed on Windows or on Linux. We used BPEL [11] as
workflow language for implementing the management plans
because it offers many language constructs for implementing
asynchronous service interaction which enables an easy
integration of our asynchronous operations in the plans.

V. VALIDATION

For validation purposes, we used the Lego4TOSCA node
types to model and provision a sample cloud service as shown
in Fig. 1. The depicted Notebook Application is a simple PHP
application allowing creating, editing and deleting text notes.
These notes are persistently stored in a MySQL database.

EC2.startVM(…)

Ubuntu.runScript(…)

WebServer.install(…) MySQL.install(…)

WebServer.deployApp(…) MySQL.createDB(…)

Fig. 8. Notebook Application Build Plan

In a first step, we modeled the service topology using the
Winery application, an open source modeling tool for TOSCA
cloud services [12]. Winery is an open source project hosted at
the Apache Foundation

1
 and is in addition available online

2
 for

testing purposes. After that, we created several BPEL plans
realizing the provisioning, management and de-provisioning of
the sample service topology. The topology model, the plans
and the implementation artifacts are packed in one CSAR file.

As runtime environment for the created CSAR file we used
the OpenTOSCA container [4], an open source TOSCA
container

3
. The OpenTOSCA container deployed the

Lego4TOSCA implementation artifacts on a Tomcat server and
the contained BPEL plans on a WSO2 Business Process
Server. After that, we were able to automatically create
instances of the Notebook application by running the build plan
depicted in Fig. 8.

For further validation and to extensively test the
Lego4TOSCA node types we created some variants of the
service topology described so far. To test the composability
feature and the underlying strategy pattern, we exchanged the
EC2 node with a VMWare ESXi node and also the Ubuntu
node with a Windows Server node (in all possible
combinations). The resulting CSAR files also worked as
expected and the exchange of nodes in the service topology had
only minor effect on the build plans.

VI. RELATED WORK

Due to the fact that TOSCA has been published quite
recently, there is only little work already conducted related to
it. In [6] an approach is developed to integrate existing cloud
management solutions based on Chef

4
 with TOSCA. Similar to

1 https://projects.eclipse.org/projects/soa.winery
2 http://winery.opentosca.org/
3 http://www.opentosca.org/
4 http://www.opscode.com/chef/

our work, it is shown how build node types for TOSCA. In
contrast, the focus of this paper is how to reuse and adapt an
existing management approach including already existing
artifacts. The deep integration with TOSCA and the possible
benefits provided by it are not covered in this work.

In [13] the architecture of a cloud management system is
introduced. The operations to manage cloud resources are
provided over a RESTful API and an additional graphical user
interface based on this API. The caller of a management
operation interacts with a manager component which in turn
interacts with the managed elements, for example a virtual
machine or a web server. Similar to the Lego4TOSCA node
types, the interaction between the manager component and the
managed elements is based on a callback mechanism. In
contrast, it is required that each manageable component hosts a
special agent component.

In [14], a method enabling the modeling and automated
provisioning of application topologies is presented. Similarly to
TOSCA, complex applications are modeled using a graph
based approach. In addition, this work focuses on the definition
and resolution of so called variability points describing needed
configuration activities during the setup of an application.
Another focus is the realization of an automated application
topology deployment, therefore following a declarative
approach.

VII. CONCLUSION AND FUTURE WORK

As a core result, this paper presents a comprehensive design
guide for composable building blocks for cloud applications
based on TOSCA. We started with an extensive discussion of
several TOSCA features like properties documents and
requirements and capabilities. We showed how they are used
by the Lego4TOSCA node types and what benefits a deep
integration with TOSCA can provide. As a result of our design
decisions, the Lego4TOSCA node types are an easy
composable and easy to use set of modeling artifacts to create
complex cloud service topologies. In addition, the
corresponding implementation artifacts are realized as stateless
components and therefore provide a scalable and robust
implementation of the provided management operations. We
were able to validate our work using existing open source tools
from the TOSCA domain like Winery and OpenTOSCA. We
created a sample application and conducted extensive tests.

One aspect currently not supported by our node types is
policies. In TOSCA, policies provide a means to express non-
functional requirements to the nodes of a service topology. To
realize these non-functional requirements at runtime, we aim at
extending the Lego4TOSCA node types to be policy aware.
Basic concepts regarding policies in TOSCA in general and
also in combination with Lego4TOSCA have already been
published [3].

As a more technical aspect we are also interested in
benchmarking the Lego4TOSCA node types. A first approach
would be to determine, how many management operations can

be handled in parallel by a single implementation artifact. As
the implementation artifacts are hosted by a TOSCA container,
for example OpenTOSCA, and the properties documents are
also managed by this container, we believe that a meaningful
benchmark also has to include the performance of the TOSCA
container.

ACKNOWLEDGMENT

This work was funded by the BMWi project Migrate!
(01ME11055). We thank Robin Boldt, Marcus Eisele, Olaf
Hoffeld, Thomas Kosch, Fabian Merkle, Maximilian Pfeffer,
and Eric Seiz for their help with the first implementation of the
Lego4TOSCA node types.

REFERENCES

[1] Topology and Orchestration Specification for Cloud Applications
Version 1.0. 25 November 2013. OASIS Standard. http://docs.oasis-
open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html.

[2] Topology and Orchestration Specification for Cloud Applications
(TOSCA) Primer Version 1.0. 31 January 2013. OASIS Committee Note
Draft 01. http://docs.oasis-open.org/tosca/tosca-primer/v1.0/tosca-
primer-v1.0.html.

[3] Waizenegger, T.; Wieland, M.; et al: Policy4TOSCA: A Policy-Aware
Cloud Service Provisioning Approach to Enable Secure Cloud
Computing. In: OTM 2013 Conferences.

[4] Binz, T.; Breitenbücher, U.; Haupt, F.; Kopp, O.; Leymann, F.; Nowak,
A.; Wagner, S.: OpenTOSCA – A Runtime for TOSCA-based Cloud
Applications. In: ICSOC 2013.

[5] Lipton, P. 2013. Escaping Vendor Lock-in with TOSCA, an Emerging
Cloud Standard for Portability. CA Technology Exchange 4, 1, 49–55.

[6] Wettinger, J.; Behrendt, M.; et al: Integrating Configuration
Management with Model-Driven Cloud Management Based on TOSCA.
In: CLOSER 2013.

[7] Binz, T.; Breiter, G.; Leymann, F.; Spatzier, T.: Portable Cloud Services
Using TOSCA. In: IEEE Internet Computing. Vol. 16(03), 2012.

[8] Leach, P. J.; Mealling, M.; Salz, R.: A universally unique identifier
(uuid) urn namespace. IETF RFC. http://tools.ietf.org/html/rfc4122

[9] Hohpe, G.; Bobby, W.: Enterprise integration patterns: Designing,
building, and deploying messaging solutions. Addison-Wesley.

[10] Erich Gamma, et al.: Design patterns: elements of reusable object-
oriented software. Addison Wesley Publishing Company ,1995.

[11] Organization for the Advancement of Structured Information Standards
(OASIS) (2007): Web Services Business Process Execution Language
Version 2.0. OASIS Standard.
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html.

[12] Kopp, O.; Binz, T.; Breitenbücher, U.; Leymann, F.: Winery - A
Modeling Tool for TOSCA-based Cloud Applications. In: ICSOC 2013.

[13] Hyuck Han; Shingyu Kim; Hyungsoo Jung; Yeom, H.Y.; Changho
Yoon; Jongwon Park; Yongwoo Lee: A RESTful Approach to the
Management of Cloud Infrastructure. In: CLOUD '09.

[14] Mietzner, Ralph: A method and implementation to define and provision
variable composite applications, and its usage in cloud computing.
(2010).

[15] Mell, Peter; Grance, Timothy (2011): The NIST Definition of Cloud
Computing (Draft). http://www.nist.gov/itl/cloud/.

[16] Binz, T., Breitenbücher, U., Kopp, O., & Leymann, F. (2014). TOSCA:
Portable Automated Deployment and Management of Cloud
Applications. In Advanced Web Services. Springer New York.

All links were last followed on 14.04.2014.

	cover-IEEE
	Lego4TOSCA

